Abstract
We describe quantum dynamical calculations of ultracold ${}^{85}$Rb trap-loss collisions induced by pulses of light whose frequency is chirped on the nanosecond time scale. The chirped light excites the ground-state collisional wave function to the long-range attractive potential and escape from the trap is modeled by an absorbing boundary at short range. Both positive and negative chirps are considered and various chirp shapes and detunings are examined. For positive chirps, the loss rates are rather independent of the chirp shape. Negative chirps, on the other hand, show a dependence on chirp shape for detunings where collisional flux can be coherently returned to the ground state. These trends are consistent with the results of a recent experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.