Abstract

In this study, we established a versatile and simple magnetic-assisted microfluidic method for fast bacterial detection. Quantum dots (QDs) were loaded onto magnetic beads (MBs) to construct performance enhanced on-chip capture of bacteria. Escherichia coli (E. coli), as a model bacterium was studied. CdSe QDs were deposited onto the surface of Fe3O4 MBs through layer-by-layer self-assembly to enhance the loading of antibodies (Abs). MBs functionalized with anti-E. coli antibody molecules in a micropillar-based microfluidic chip were utilized to capture E. coli, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used for characterization of captured bacteria. This method was found capable of specifically isolating E. coli within the range of 1.0 to 1.0 × 109 CFU/mL, having a detection limit (LOD) of 10 CFU/mL. The average similarity score among mass spectra for the bacterial capture obtained in independent experiments is calculated as 0.97 ± 0.01 (n = 3), which shows this work's excellent reproducibility for bacterial capture. Bacterial growth on ready-to-eat (RTE) foods during its time of storage was successfully monitored. The present protocol has promising potential for microbial control and pathogen detection in the food industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call