Abstract
BackgroundEngineered multifunctional nanoparticles (NPs) have made a tremendous impact on the biomedical sciences, with advances in imaging, sensing and bioseparation. In particular, the combination of optical and magnetic responses through a single particle system allows us to serve as novel multimodal molecular imaging contrast agents in clinical settings. Despite of essential medical imaging modalities and of significant clinical application, only few nanocomposites have been developed with dual imaging contrast. A new method for preparing quantum dots (QDs) incorporated magnetic nanoparticles (MNPs) based on layer-by-layer (LbL) self-assembly techniques have developed and used for cancer cells imaging.MethodsHere, citrate - capped negatively charged Fe3O4 NPs were prepared and coated with positively - charged hexadecyltrimethyl ammonium bromide (CTAB). Then, thiol - capped negatively charged CdTe QDs were electrostatically bound with CTAB. Morphological, optical and magnetic properties of the fluorescent magnetic nanoparticles (FMNPs) were characterized. Prepared FMNPs were additionally conjugated with hCC49 antibodies fragment antigen binding (Fab) having binding affinity to sialylated sugar chain of TAG-72 region of LS174T cancer cells, which was prepared silkworm expression system, and then were used for imaging colon carcinoma cells.ResultsThe prepared nanocomposites were magnetically responsive and fluorescent, simultaneously that are useful for efficient cellular imaging, optical sensing and magnetic separation. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the particle size is around 50 nm in diameter with inner magnetic core and outer CdTe QDs core-shell structure. Cytotoxicity test of prepared FMNPs indicates high viability in Vero cells. NPs conjugated with anti cancer antibodies were successfully labeled on colon carcinoma cells (LS174) in vitro and showed significant specificity to target cells.ConclusionThe present report demonstrates a simple synthesis of CdTe QDs-Fe3O4 NPs. The surface of the prepared FMNPs was enabled simple conjugation to monoclonal antibodies by electrostatic interaction. This property further extended their in vitro applications as cellular imaging contrast agents. Such labeling of cells with new fluorescent-magneto nanoprobes for living detection is of interest to various biomedical applications and has demonstrated the potential for future medical use.
Highlights
Engineered multifunctional nanoparticles (NPs) have made a tremendous impact on the biomedical sciences, with advances in imaging, sensing and bioseparation
It is conceivable that one single agent to provide imaging in multiple imaging modalities would be of great value to offer more comprehensive diagnostic information and the dynamics of disease progression. An example of such multifunctional NPs are Fluorescent-magnetic nanoparticle (FMNP) that bear two attractive features, fluorescence and superparamagnetism, allowing their intracellular movements to be controlled using magnetic force and monitored using a fluorescent microscopy, simultaneous delivery of fluorescence and magnetic particles to individual cells offers the opportunity of correlating optical images and magnetic resonance imaging (MRI) [8,10]
Fluorescence emission spectrum of FMNPs was recorded for the supernatant and residue after magnetic separation from the reaction mixtures
Summary
Engineered multifunctional nanoparticles (NPs) have made a tremendous impact on the biomedical sciences, with advances in imaging, sensing and bioseparation. It is conceivable that one single agent to provide imaging in multiple imaging modalities (optical and magnetic) would be of great value to offer more comprehensive diagnostic information and the dynamics of disease progression An example of such multifunctional NPs are FMNPs that bear two attractive features, fluorescence and superparamagnetism, allowing their intracellular movements to be controlled using magnetic force and monitored using a fluorescent microscopy, simultaneous delivery of fluorescence and magnetic particles to individual cells offers the opportunity of correlating optical images and MRI [8,10]. These features could lead to effective multifunctional drug-loaded MNPs that would facilitate increased drug transport rates, mucus penetration, antibiotic efficiency in biofilms and cellular imaging
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.