Abstract

Novel InAs/InGaAs quantum dots-in-a-well (DWELL) infrared photodetectors are reported. These detectors, in which the active region consists of InAs quantum dots embedded in an InGaAs well quantum well, represent a hybrid between a conventional quantum well infrared photodetector (QWIP) and a quantum dot infrared photodetector (QDIP). Like QDIPs, the DWELL detectors display normal incidence operation without gratings or optocouplers while demonstrating reproducible “dial-in recipes” for control over the operating wavelength, like QWIPs. Using femtosecond spectroscopy, long carrier lifetimes have been observed in DWELL heterostructures suggesting their potential for high temperature operation. Moreover, the DWELL detectors also have demonstrated bias-tunability and multi-color operation in the mid wave infrared (MWIR, 3–5 μm), long wave infrared (LWIR, 8–12 μm) and very long wave infrared (VLWIR, >14 μm) regimes. We have recently realized LWIR 320 × 256 focal plane arrays (FPAs) operating at liquid nitrogen temperatures. One of the potential problems with these detectors is the low quantum efficiency, which translates into low responsivity and detectivity. Some solutions to mitigate these problems are suggested at the end of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.