Abstract

The article is of a review nature, in which the dynamics of publication activity is analyzed and the possibilities of using quantum dots to solve various analytical problems are evaluated. The attention is paid to both traditional and relatively rare areas of analytical application of these nanostructures. A brief review of the types, advantages and disadvantages of synthesis methods, the influence of external factors on the band gap and luminescence intensity of inorganic nanosized phosphors, quantum dots of different nature, is presented. The areas of application and the main tasks solved with the use of quantum dots are systematized. Their analytical characteristics, operational properties and ways of regulating them are discussed. An effective way to control the analytical properties of the systems based on quantum dots is a directional change of the affinity for components by varying the nature of the stabilizing or modifying shell. Semiconductor colloidal quantum dots coated with a larger bandgap shell were selected for analytical use as the most commonly used systems due to their good photostability and fluorescence quantum yield. The advantages and disadvantages of other types of shells, as well as ways of modifying them, are shown. Solutions for organic analysis and medical diagnostics are considered. Systems of quantum dots used as biosensors with various guiding agents are considered, and their properties, advantages and disadvantages compared. Little studied issues and solutions in the direction of using quantum dots for developing sensor systems and their use for non-invasive analysis of living systems based on the results of detection of volatile organic compounds are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.