Abstract

Advances in fluorescent nanomaterials and photonics have led to a new generation of photonic devices for applications in biosensing, diagnostics, and therapy. However, for clinical utility, biocompatibility and limited light guiding in tissues pose significant challenges. Here, we report a new type of soft, biocompatible, and tapered optical waveguide with capability of delivering light in deep tissues and demonstrate it as a ratiometric probe for rapid point-of-care detection of metal ions. The waveguide was made from quantum dots (QDs)-incorporated biocompatible hydrogels and coated with a thin sensing film to ensure fast exchanges with the surrounding analytes. The tapered design of the waveguide allows more light extraction for efficient excitation of the coating film. To achieve ratiometric measurements, two types of QDs with well-resolved emission bands are synthesized and immobilized in the waveguide and the coating film, respectively. We show that the ratiometric readout of the waveguide sensor is free of environmental disturbances and exhibits negligible drifts when applied in various environments such as being immersed in water or embedded in tissues. The waveguide device provides a new photonic-sensing platform that may allow being engineered to sense a wide range of metal ions and analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.