Abstract

A novel and specific nanoplatform for in vitro simultaneous cancer-targeted optical imaging and magnetically guided drug delivery is developed by conjugating CdTe quantum dots with Fe(3)O(4)-filled carbon nanotubes (CNTs) for the first time. Fe(3)O(4) is filled into the interior of the CNTs, which facilitates magnetically guided delivery and improves the synergetic targeting efficiency. In comparison with that immobilized on the external surface of CNTs, the magnetite nanocrystals inside the CNTs protect it from agglomeration, enhance its chemical stability, and improve the drug loading capacity. It also avoids magnetic nanocrystals-induced quenching of fluorescence of the quantum dots. The SiO(2)-coated quantum dots (HQDs) attached on the surface of CNTs exhibit favorable fluorescence as the hybrid SiO(2) shells on the QDs surface prevent its fluorescence quenching caused by the CNTs. In addition, the hybrid SiO(2) shells also mitigate the toxicity of the CdTe QDs. By coating transferrin on the surface of the herein modified CNTs, it provides a dual-targeted drug delivery system to transport the doxorubicin hydrochloride (DOX) into Hela cells by means of an external magnetic field. The nanocarrier based on the multifunctional nanoplatform exhibits an excellent drug loading capability of ca. 110%, in addition to cancer-targeted optical imaging as well as magnetically guided drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.