Abstract

Molecularly imprinted film with diphenolic acid (DPA) as dummy template molecule has been grafted on the surface of Mn-doped ZnS quantum dots (QDs) to develop a selective and sensitive sensor for rapid determination of tetrabromobisphenol A (TBBPA) in water and soils. The obtained DPA-MIP-QDs sensor has distinguished selectivity and high binding affinity to TBBPA. The fluorescence quenching fractions of the sensor presented a satisfactory linearity with the concentrations of TBBPA in the range of 0.1-100 μM, and its limit of detection can reach 0.015 μM. The sensor has been successfully applied to determine the TBBPA in water and soil samples, and the average recoveries of the TBBPA at various spiking levels ranged from 80.2% to 96.5% with relative standard deviation below 8.0%. The results provided a clue to develop sensors for rapid determination of hazardous materials from complex matrixes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.