Abstract

Significant developments in biological applications are occurring through the incorporation of Quantum Dots (QDs) as biological labels. The demonstration of QDs unique optical properties may have important implications for the study of environmental samples, where microorganisms of interest need to be isolated away from the background debris. Flow cytometric analysis was used to determine the fluorescence intensity of oocysts after mAb staining by QDs or organic fluorophore conjugates. In addition, the level of non-specific binding to detrital particles within a control water concentrate was estimated using the optimal staining concentration determined for each mAb analyzed. Under 488 nm excitation, oocysts stained with QD-conjugates exhibited significantly lower fluorescence intensity than organic conjugates. Moreover, the level of non-specific binding by QD-conjugates to detrital particles present in the water concentrate was significantly higher that of the organic conjugates. While QDs are noted for their superior spectral characteristics, they have been shown here to be unsuitable for conventional flow cytometric detection of Cryptosporidium. Therefore, we conclude that in their current form, QD's are severely limited for fluorescent detection of pathogens in environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.