Abstract

Tandem cells are one of the most effective ways of breaking the single junction Shockley-Queisser limit. Solution-processable phosphate-buffered saline (PbS) quantum dots are good candidates for producing multiple junction solar cells because of their size-tunable band gap. The intermediate recombination layer (RL) connecting the subcells in a tandem solar cell is crucial for device performance because it determines the charge recombination efficiency and electrical resistance. In this work, a solution-processed ultrathin NiO and Ag nanoparticle film serves as an intermediate layer to enhance the charge recombination efficiency in PbS QD dual-junction tandem solar cells. The champion devices with device architecture of indium tin oxide/S-ZnO/1.45 eV PbS-PbI2/PbS-EDT/NiO/Ag NP/ZnO NP/1.22 eV PbS-PbI2/PbS-EDT/Au deliver a 7.1% power conversion efficiency, which outperforms the optimized reference subcells. This result underscores the critical role of an appropriate nanocrystalline RL in producing high-performance solution-processed PbS QD tandem cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call