Abstract

Quantum dot structures have gained increasing interest in materials science due to their special electrical and optical behavior. A combination of electron-optical techniques is applied to correlate such properties with the morphology and structure of quantum dots in the InGaAs system. TEM techniques, e.g. imaging by conventional diffraction contrast, by high-resolution TEM and by energy filtering (EFTEM) are focused on the determination of parameters, like shape and size of islands, their chemical composition and the complex lattice strain fields. An image contrast analysis in terms of shape and strain demands the application of image simulation techniques based on the dynamical theory and on structure models refined by molecular dynamics or molecular static energy minimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.