Abstract

Dendritic cell (DC) vaccines hold great potential in cancer immunotherapy, but the suboptimal design of DC vaccines and the immunosuppressive tumor microenvironment largely impair their anti-tumor efficacy. Here, quantum dot (QD) pulsed-DC vaccines integrating with tumor-associated macrophage polarization are developed for amplified anti-tumor immunity. Semiconductor QDs are engineered with diverse functions to act as fluorescence nanoprobes, immunomodulatory adjuvants, and nanocarriers to load tumor antigens and Toll-like receptor 9 agonists. The QD-pulsed DC vaccines enable spatiotemporal tracking of lymphatic drainage and efficacy evaluation of DC immunotherapy, and trigger potent immunoactivation. Specifically, designer DC vaccine plus macrophage polarization elicits potent immune response to stimulate innate and adaptive antitumor immunity and ameliorate the immunosuppressive tumor microenvironment. As a new combination therapy, this strategy greatly boosts antigen-specific T-cell immunity and thus strongly inhibits local tumor growth and tumor metastasis in vivo. This study may provide an applicable treatment for cancer immunotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.