Abstract

Quantum dots (QDs), as new and promising fluorescent probes, hold great potential in long term non-invasive bio-imaging, however there are many uncovered issues regarding their competency. In the present study, different QDs (525, 585 and 800 nm) were used to label CD133, CD34, CD14 and mesenchymal stem cells (MSCs) using positively charged peptides. Results demonstrated highly efficient internalization with the possible involvement of macropinocytosis. As indicated by LDH release and the TUNEL assay, no measurable effects on cell viability were detected at a concentration of 10 nM. QDs did not have any deleterious effects on normal cell functionality where both labeled CD133 + cells and MSCs remarkably differentiated along multiple lineages with the use of the colony forming assay and adipo/osteo induction, respectively. Our results regarding QD maintenance revealed that these nano-particles are not properly stable and various excretion times have been observed depending on particle size and cell type. In vitro co-culture system and transplantation of labeled cells to an animal model showed that QDs leaked out from labeled cells and the released nano-particles were able to re-enter adjacent cells over time. These data suggest that before any utilization of QDs in bio-imaging and related applications, an efficient intra-cellular delivery technique should be considered to preserve QDs for a prolonged time as well as eliminating their leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.