Abstract

Given x,y ∈ {0,1}ⁿ, Disjointness consists in deciding whether x_i = y_i = 1 for some index i ∈ [n]. We study the problem of computing this function in a distributed computing scenario in which the inputs x and y are given to the processors at the two extremities of a path of length d. Each vertex of the path has a quantum processor that can communicate with each of its neighbours by exchanging O(log n) qubits per round. We are interested in the number of rounds required for computing Disjointness with constant probability bounded away from 1/2. We call this problem Set Disjointness on a Line. Set Disjointness on a Line was introduced by Le Gall and Magniez [Le Gall and Magniez, 2018] for proving lower bounds on the quantum distributed complexity of computing the diameter of an arbitrary network in the CONGEST model. However, they were only able to provide a lower bound when the local memory used by the processors on the intermediate vertices of the path is severely limited. More precisely, their bound applies only when the local memory of each intermediate processor consists of O(log n) qubits. In this work, we prove an unconditional lower bound of Ω(∛{n d²} + √n) rounds for Disjointness on a Line with d + 1 processors. This is the first non-trivial lower bound when there is no restriction on the memory used by the processors. The result gives us a new lower bound of Ω (∛{nδ²} + √n) on the number of rounds required for computing the diameter δ of any n-node network with quantum messages of size O(log n) in the CONGEST model. We draw a connection between the distributed computing scenario above and a new model of query complexity. In this model, an algorithm computing a bi-variate function f (such as Disjointness) has access to the inputs x and y through two separate oracles 𝒪_x and 𝒪_y, respectively. The restriction is that the algorithm is required to alternately make d queries to 𝒪_x and d queries to 𝒪_y, with input-independent computation in between queries. The model reflects a switching delay of d queries between a of queries to x and the following of queries to y. The technique we use for deriving the round lower bound for Disjointness on a Line also applies to this query model. We provide an algorithm for Disjointness in this query model with query complexity that matches the round lower bound stated above, up to a polylogarithmic factor. In this sense, the round lower bound we show for Disjointness on a Line is optimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.