Abstract

Without access to the full quantum state, modeling dissipation in an open system requires approximations. The physical soundness of such approximations relies on using realistic microscopic models of dissipation that satisfy completely positive dynamical maps. Here we present an approach based on the use of the Bohmian conditional wave function that, by construction, ensures a completely positive dynamical map for either Markovian or non-Markovian scenarios, while allowing the implementation of realistic dissipation sources. Our approach is applied to compute the current-voltage characteristic of a resonant tunneling device with a parabolic-band structure, including electron-lattice interactions. A stochastic Schr\"odinger equation is solved for the conditional wave function of each simulated electron. We also extend our approach to (graphene-like) materials with a linear band-structure using Bohmian conditional spinors for a stochastic Dirac equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call