Abstract

Quantum computers have the unique ability to operate relatively quickly in high-dimensional spaces—this is sought to give them a competitive advantage over classical computers. In this work, we propose a novel quantum machine learning model called the Quantum Discriminator, which leverages the ability of quantum computers to operate in the high-dimensional spaces. The quantum discriminator is trained using a quantum-classical hybrid algorithm in O(NlogN)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(N\\log N)$$\\end{document} time, and inferencing is performed on a universal quantum computer in O(N)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(N)$$\\end{document} time. The quantum discriminator takes as input the binary features extracted from a given datum along with a prediction qubit, and outputs the predicted label. We analyze its performance on the Iris and Bars and Stripes data sets, and show that it can attain 99% accuracy in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call