Abstract

The dynamic behavior of the quantum discord in one-dimensional scattering of a qubit (a spin-1/2 particle) by single and double well-localized fixed spin impurities is investigated theoretically. It is assumed that the incident particle is scattered by the spin impurities through the Ising and/or Heisenberg interactions. These potentials create quantum mechanical correlation between the reflected and transmitted parts of the scattered system and the impurities. It is shown that the incident momentum, strength of the interaction potentials, and the separation between the impurities can be regarded as the control parameters for the quantum discord and concurrence manipulations. In particular, it has been found that the correlations are periodic functions of the wavelength of the incident particle when it is scattered by the double spin impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.