Abstract

Top quarks have been recently shown to be a promising system to study quantum information at the highest-energy scale available. The current lines of research mostly discuss topics such as entanglement, Bell nonlocality or quantum tomography. Here, we provide the full picture of quantum correlations in top quarks by studying also quantum discord and steering. We find that both phenomena are present at the LHC. In particular, quantum discord in a separable quantum state is expected to be detected with high-statistical significance. Interestingly, due to the singular nature of the measurement process, quantum discord can be measured following its original definition, and the steering ellipsoid can be experimentally reconstructed, both highly demanding measurements in conventional setups. In contrast to entanglement, the asymmetric nature of quantum discord and steering can provide witnesses of CP-violating physics beyond the standard model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call