Abstract

The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover's search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover's search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover's search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.