Abstract

We have used the ring polymer molecular dynamics method to study the diffusion of muonium, hydrogen, and deuterium atoms in liquid water and hexagonal ice over a wide temperature range (8-361 K). Quantum effects are found to dramatically reduce the diffusion of muonium in water relative to that predicted by classical simulation. This leads to a simple explanation for the lack of any significant isotope effect in the observed diffusion coefficients of these species in the room temperature liquid. Our results indicate that the mechanism of the diffusion in liquid water is similar to the intercavity hopping mechanism observed in ice, supplemented by the diffusion of the cavities in the liquid. Within the same model, we have also been able to simulate the observed crossover in the c-axis diffusion coefficients of hydrogen and deuterium in hexagonal ice. Finally, we have been able to obtain good agreement with experimental data on the diffusion of muonium in hexagonal ice at 8 K, where the process is entirely quantum mechanical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call