Abstract

Feistel schemes are important components of symmetric ciphers, which have been extensively studied in the classical setting. We examine the extension methods of differential distinguishers of Feistel key-function and Feistel function-key schemes. The schemes are subjected to quantum differential collision distinguishing attacks based on the methods. The results show that the complexity is lower than that of differential attacks using only Grover algorithm, and the complexity of differential collision attack based on the Brassard-Høyer-Tapp and Grover algorithms is lower than that of quantization when using only the Grover algorithm. The results also show that different algorithms and methods can be combined to produce a more effective cryptanalysis approach. This provides a research direction for post-quantum cryptographic analysis and design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.