Abstract

We present a rigorous microscopic theory of the extrinsic spin Hall effect in disordered graphene based on a nonperturbative quantum diagrammatic treatment incorporating skew scattering and anomalous---impurity concentration-independent---quantum corrections on equal footing. The leading skew scattering contribution to the spin Hall conductivity is shown to quantitatively agree with Boltzmann transport theory over a wide range of parameters. Our self-consistent approach---where all topologically equivalent noncrossing diagrams are resummed---unveils that the skewness generated by spin--orbit-active impurities deeply influences the anomalous component of the spin Hall conductivity, even in the weak scattering regime. This seemingly counterintuitive result is explained by the rich sublattice structure of scattering potentials in graphene, for which traditional Gaussian disorder approximations fail to capture the intricate correlations between skew scattering and side jumps generated through diffusion. Finally, we assess the role of quantum interference corrections by evaluating an important subclass of crossing diagrams recently considered in the context of the anomalous Hall effect, the $X$ and $\Psi$ diagrams [Ado et al., EPL 111, 37004 (2015)]. We show that $\Psi$ diagrams---encoding quantum coherent skew scattering---display a strong Fermi energy dependence, dominating the anomalous spin Hall component away from the Dirac point. Our findings have direct implications for nonlocal transport experiments in spin--orbit-coupled graphene systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.