Abstract

A quantum field theoretical approach, in which a quantum probe is used to investigate the properties generic non-flat FLRW space-times is discussed. The probe is identified with a conformally coupled massless scalar field defined on a space-time with horizon and the procedure to investigate the local properties is realized by the use of Unruh-DeWitt detector and by the evaluation of the regularized quantum fluctuations. In the case of de Sitter space, the coordinate independence of our results is checked, and the Gibbons-Hawking temperature is recovered. A possible generalization to the electromagnetic probe is also briefly indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.