Abstract

Photon-assisted tunneling of electrons through an insulating barrier may be used to detect long-wavelength radiation with a sensitivity approaching the limit imposed by the Heisenberg uncertainty principle. A new generation of ultra-low-noise millimeter-wave receivers, currently being developed for astronomical observation, utilizes the extremely sharp nonlinearity produced by single-electron quasiparticle tunneling between two superconductors in a superconductor-insulator-superconductor (SIS) tunnel junction. At millimeter wavelengths, the quantum energy $\frac{\ensuremath{\hbar}\ensuremath{\omega}}{e}$ may be larger than the voltage width for onset of quasiparticle tunneling in a SIS junction; and under these conditions the absorption of a single photon can cause one additional electron to tunnel through the barrier. Several newly discovered quantum effects become possible in this regime, including power amplification of an incoming signal during the process of frequency down-conversion in a heterodyne receiver. The experimental development of SIS millimeter-wave receivers is reviewed, along with the quantum theory of mixing which predicts their performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.