Abstract

Surface-Enhanced Raman Scattering (SERS) allows for detection and identification of molecular vibrational fingerprints in minute sample quantities. The SERS process can be also exploited for optical manipulation of molecular vibrations. We present a quantum description of Surface-Enhanced Resonant Raman scattering (SERRS), in analogy to hybrid cavity optomechanics, and compare the resonant situation with the off-resonant SERS. Our model predicts the existence of a regime of coherent interaction between electronic and vibrational degrees of freedom of a molecule, mediated by a plasmonic nanocavity. This coherent mechanism can be achieved by parametrically tuning the frequency and intensity of the incident pumping laser and is related to the optomechanical pumping of molecular vibrations. We find that vibrational pumping is able to selectively activate a particular vibrational mode, thus providing a mechanism to control its population and drive plasmon-assisted chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.