Abstract

The quantum theory is applied for the accurate computation of high-frequency (up to ) spectral intensities in Ar - Ar collision-induced light scattering (CILS) processes at room temperature. Numerically, this becomes possible by means of the two-point Fox - Goodwin integrator, propagating on a grid the ratio of the wavefunction at adjacent points. Wavefunctions are normalized in a handy way which is based on the notion of the local wavenumber. Various potentials and anisotropy models are tested and compared. For frequencies exceeding our results show significant deviations as compared to the theoretical predictions of the classical theory. When the self-consistent field (SCF) anisotropy is applied, a clear tendency of the quantum calculation to approach recent experimental data is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.