Abstract

The vortex state, characterized by an in-plane closed flux domain structure and an out-of-plane magnetization at its centre (the vortex core), is one of the magnetic equilibria of thin soft ferromagnetic micron-size dots. In the last two decades many groups have been working on the dynamics of the magnetic moment in nanomagnetic materials at low temperatures, it giving rise to the observation of quantum relaxations and quantum hysteresis cycles. For the first time, we report experimental evidence of quantum dynamics of the vortex core of micron-size permalloy (Fe$_{19}$Ni$_{81}$) disks induced by the application of an in-plane magnetic field. It is attributed to the quantum tunneling of the vortex core through pinning barriers, which are associated to structural defects in the dots, towards its equilibrium position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.