Abstract

We study quantum scattering on manifolds equivalent to the Euclidean space near infinity, in the semiclassical regime. We assume that the corresponding classical flow admits a non-trivial trapped set, and that the dynamics on this set is of Axiom A type (uniformly hyperbolic). We are interested in the distribution of quantum resonances near the real axis. In two dimensions, we prove that, if the trapped set is sufficiently “thin”, then there exists a gap between the resonances and the real axis (that is, quantum decay rates are bounded from below). In higher dimension, the condition for this gap is given in terms of a certain topological pressure associated with the classical flow. Under the same assumption, we also prove a resolvent estimate with a logarithmic loss compared to non-trapping situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.