Abstract

Methods based on the use of Green’s functions or Jost functions and the Fock–Krylov method are apparently very different approaches to understand the time evolution of unstable states. We show that the two former methods are equivalent up to some constants and as an outcome find an analytic expression for the energy density of states in the Fock–Krylov amplitude in terms of the coefficients introduced in the Green’s functions and the Jost functions methods. This model-independent density is further used to obtain an analytical expression for the survival amplitude and study its behaviour at large times. Using these expressions, we investigate the origin of the oscillatory behaviour of the decay law in the region of the transition from the exponential to the non-exponential at large times. With the objective of understanding the failure of nuclear and particle physics experiments in observing the non-exponential decay law predicted by quantum mechanics for large times, we derive analytical formulae for the critical transition time, , from the exponential to the inverse power law behaviour at large times. Evaluating for some particle resonances and narrow nuclear states which have been tested experimentally to verify the exponential decay law, we conclude that the large time power law in particle and nuclear decay is hard to find experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call