Abstract

We study an experimentally realizable system containing stable black hole–white hole acoustic horizons in toroidally trapped Bose-Einstein condensates—the quantum de Laval nozzle. We numerically obtain stationary flow configurations and assess their stability using Bogoliubov theory, finding both in hydrodynamic and nonhydrodynamic regimes there exist dynamically unstable regions associated with the creation of positive and negative energy quasiparticle pairs in analogy with the gravitational Hawking effect. The dynamical instability takes the form of a two mode squeezing interaction between resonant pairs of Bogoliubov modes. We study the evolution of dynamically unstable flows using the truncated Wigner method, which confirms the two mode squeezed state picture of the analogue Hawking effect for low winding number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call