Abstract

Much of digital data requires long-term protection of confidentiality, for example, medical health records. Cryptography provides such protection. However, currently used cryptographic techniques such as Diffe-Hellman key exchange may not provide long-term security. Such techniques rely on certain computational assumptions, such as the hardness of the discrete logarithm problem that may turn out to be incorrect. On the other hand, quantum cryptography---in particular quantum random number generation and quantum key distribution---offers information theoretic protection. In this paper, we explore the challenge of providing long-term confidentiality and we argue that a combination of quantum cryptography and classical cryptography can provide such protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.