Abstract

AbstractThe goal of this chapter is to provide an introduction to the multi-scale entanglement renormalization ansatz (MERA) and its application to the study of quantum critical systems. The MERA, in its scale-invariant form, is seen to offer direct numerical access to the scale-invariant operators of a critical theory. As a result, given a critical Hamiltonian on the lattice, the scale-invariant MERA can be used to characterize the underlying conformal field theory. The performance of the MERA is benchmarked for several critical quantum spin chains, namely Ising, Potts, XX and (modified) Heisenberg models, and an insightful comparison with results obtained using a matrix product state is made. The extraction of accurate conformal data, such as scaling dimensions and operator product expansion coefficients of both local and non-local primary fields, is also illustrated.KeywordsGround State EnergyConformal Field TheoryReduce Density MatrixDensity Matrix Renormalization GroupTensor NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.