Abstract
Based on large-scale density matrix renormalization group techniques, we investigate the critical behaviors of quantum three-state Potts chains with long-range interactions. Using fidelity susceptibility as an indicator, we obtain a complete phase diagram of the system. The results show that as the long-range interaction power α increases, the critical points f_{c}^{*} shift towards lower values. In addition, the critical threshold α_{c}(≈1.43) of the long-range interaction power is obtained for the first time by a nonperturbative numerical method. This indicates that the critical behavior of the system can be naturally divided into two distinct universality classes, namely the long-range (α<α_{c}) and short-range (α>α_{c}) universality classes, qualitatively consistent with the classical ϕ^{3} effective field theory. This work provides a useful reference for further research on phase transitions in quantum spin chains with long-range interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.