Abstract

We study a two-leg antiferromagnetic spin-1/2 ladder in the presence of a staggered magnetic field. We consider two parameter regimes: strong (weak) coupling along the legs and weak (strong) coupling along the rungs. In both cases, the staggered field drives the Haldane spin-liquid phase of the ladder towards a Gaussian quantum criticality. In a generalized spin ladder with a non-Haldane, spontaneously dimerized phase, the staggered magnetic field induces an Ising quantum critical regime. In the vicinity of the critical lines, we derive low-energy effective field theories and use these descriptions to determine the dynamical response functions, the staggered spin susceptibility, and the string order parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call