Abstract
The electronic properties of heavy fermion alloys are dominated by spin fluctuations which are expected to become critical when tuned by pressure to a quantum critical point (QCP), entering a magnetic ordered state. Apart from the onset of exotic superconductivity, unexpected "normal conducting" behavior is found close to the QCP, which does not seem only to escape the conventional view of metals (Fermi liquids) but also the "conventional view" of an antiferromagnetic quantum phase transition in these f-metals. So far only few compounds have been investigated by neutron scattering to directly reveal the critical fluctuations spectrum. In CeCu 59 Au 01 the fluctuations develop an unusual energy dependence, characterized by an exponent α = 0.75, which persist over the entire Brillouin zone, provoking an unexpected local non Fermi liquid behavior. The same unusual exponent derived from E/T scaling determines the H/T scaling of the uniform magnetization. Recent neutron scattering data in magnetic fields further confirm this picture of nearly free local magnetic moments (modified by α) emerging at the antiferromagnetic QCP in this strongly correlated electron system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.