Abstract

This article briefly reviews three topics related to the quantum critical behavior of certain heavy-fermion systems. First, we summarize an extended dynamical mean-field theory for the Kondo lattice, which treats on an equal footing the quantum fluctuations associated with the Kondo and RKKY couplings. The resulting dynamical mean-field equations describe a Kondo impurity model with an additional coupling to vector bosons. Two types of quantum phase transition appear to be possible within this approach — the first a conventional spin-density-wave transition, the second driven by local physics. For the second type of transition to be realized, the effective impurity model must have a quantum critical point exhibiting an anomalous local spin susceptibility. In the second part of the paper, such a critical point is shown to occur in two variants of the Kondo impurity problem. Finally, we propose an operational test for the existence of quantum critical behavior driven by local physics. Neutron scattering results suggest that CeCu 6-x Au x passes this test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.