Abstract

Recently a widely used computation expression for quantum Fisher information was shown to be discontinuous at the parameter points where the rank of the parametric density operator changes. The quantum Cram\'er-Rao bound can be violated on such singular parameter points if one uses this computation expression for quantum Fisher information. We point out that the discontinuity of the computation expression of quantum Fisher information is accompanied with the unboundedness of the symmetric logarithmic derivation operators, based on which the quantum Fisher information is formally defined and the quantum Cram\'er-Rao bound is originally proved. We argue that the limiting version of the quantum Cram\'er-Rao bound still holds when the parametric density operator changes its rank by closing the potential loophole of involving an unbounded SLD operator in the proof of the bound. Moreover, we analyze a typical example of the quantum statistical models with parameter-dependent rank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.