Abstract

We study the non-equilibrium steady state (NESS) of a driven dissipative one-dimensional system near a critical point, and explore how the quantum correlations compare to the known critical behavior in the ground state. The model we study corresponds to a cavity array driven parametrically at a two photon resonance, equivalent in a rotating frame to a transverse field anisotropic XY model [C. E. Bardyn and A. Imamo\u{g}lu, Phys. Rev. Lett {\bf 109} 253606 (2012)]. Depending on the sign of transverse field, the steady state of the open system can be either related to the ground state or to the maximum energy state. In both cases, many properties of the entanglement are similar to the ground state, although no critical behavior occurs. As one varies from the Ising limit to the isotropic XY limit, entanglement range grows. The isotropic limit of the NESS is however singular, with simultaneously diverging range and vanishing magnitude of entanglement. This singular limiting behavior is quite distinct from the ground state behavior, it can however be understood analytically within spin-wave theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.