Abstract

A direct quantization of the Newtonian interaction between two masses is known to establish entanglement, which if detected would witness the quantum nature of the gravitational field. Gravitational interaction is yet compatible also with gravitational decoherence models relying on classical channels, hence unable to create entanglement. Here, we show in paradigmatic cases that, despite the absence of entanglement, a classical-channel model of gravity can still establish quantum correlations in the form of quantum discord between two masses. This is demonstrated for the Kafri–Taylor–Milburn (KTM) model and a recently proposed dissipative extension of this. In both cases, starting from an uncorrelated state, a significant amount of discord is generally created. This eventually decays in the KTM model, while it converges to a small stationary value in its dissipative extension. We also find that initial local squeezing on the state of the masses can significanlty enhance the generated discord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.