Abstract

The dynamics of entanglement and quantum discord (QD) between two two-level atoms interacting with two dissipative coupled cavities in the presence of initial atom-cavity correlations is investigated. In comparison with the result of the initial factorized state, we show that the initial state contained quantum correlation of atom-cavity is most robust against the dissipative environment, and the initial atom-cavity correlations, especially the quantum correlation, play a constructive role in the generation of atomic entanglement and QD. Simultaneously, the comparison between Markovian and non-Markovian dynamics, and the influences of inter-cavity hopping rate are also taken into account and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call