Abstract

The quantum corrections to the conductivity and thermopower in monolayer graphene are studied. We use the recursive Green's-function method to calculate numerically the conductivity and thermopower of graphene. We then analyze these weak-localization corrections by fitting with the analytical theory as a function of the impurity parameters and gate potential. As a result of the quantum corrections to the thermopower, we find large magnetothermopower, which is shown to provide a very sensitive measure of the size and strength of the impurities. We compare these analytical and numerical results with existing experimental measurements of magnetoconductance of single-layer graphene and find that the average size and strength of the impurities in these samples can thereby be determined. We suggest favorable parameter ranges for future measurements of the magnetothermopower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.