Abstract
We review recent progress in the computation of leading quantum corrections to the energies of classical solitons with topological structure, including multi-soliton models in one space dimension and string configurations in three space dimensions. Taking advantage of analytic continuation techniques to efficiently organize the calculations, we show how quantum corrections affect the stability of solitons in the Shifman–Voloshin model, stabilize charged electroweak strings coupled to a heavy fermion doublet, and bind Nielsen–Olesen vortices at the classical transition between type I and type II superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.