Abstract

The one-loop contribution to the entropy of a black hole from field modes near the horizon is computed in string theory. It is modular invariant and ultraviolet finite. There is an infrared divergence that signifies an instability near the event horizon of the black hole. It is due to the exponential growth of the density of states and the associated Hagedorn transition characteristic of string theory. It is argued that this divergence is indicative of a tree level contribution, and the Bekenstein-Hawking-Gibbons formula for the entropy should be understood in terms of string states stuck near the horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.