Abstract

A phenomenological framework is presented for incorporating quantum gravity motivated corrections into the dynamics of spherically symmetric collapse. The effective equations are derived from a variational principle that guarantees energy conservation and the existence of a Birkhoff theorem. The gravitational potential can be chosen as a function of the areal radius to yield specific non-singular static spherically symmetric solutions that generically have two horizons. For a specific choice of potential the effective stress energy tensor violates only the dominant energy condition. The violations are maximum near the inner horizon and die off rapidly. A numerical study of the quantum corrected collapse of a spherically symmetric scalar field in this case reveals that the modified gravitational potential prevents the formation of a central singularity and ultimately yields a static, mostly vacuum, spacetime with two horizons. The matter "piles up" on the inner horizon giving rise to mass inflation at late times. The Cauchy horizon is transformed into a null, weak singularity, but in contrast to Einstein gravity, the absence of a central singularity renders this null singularity stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.