Abstract

We study an effective quantum description of the static gravitational potential for spherically symmetric systems up to the first post-Newtonian order. We start by obtaining a Lagrangian for the gravitational potential coupled to a static matter source from the weak field expansion of the Einstein-Hilbert action. By analysing a few classical solutions of the resulting field equation, we show that our construction leads to the expected post-Newtonian expressions. Next, we show that one can reproduce the classical Newtonian results very accurately by employing a coherent quantum state and modifications to include the first post-Newtonian corrections are considered. Our findings establish a connection between the corpuscular model of black holes and post-Newtonian gravity, and set the stage for further investigations of these quantum models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.