Abstract

We demonstrate that the methods of quantum control can be applied successfully to very large molecules in room temperature liquid solution. Chirped femtosecond pulses are used to excite a green fluorescent protein mutant in both buffered aqueous solution and solid acrylamide gel. At high energy densities, the fluorescence shows a strong chirp dependence, with positively chirped pulses transferring almost 50% more population to the excited state than negatively chirped pulses. By measuring the photobleaching rate in the gel as a function of pulse chirp, we find that the data are consistent with the bleaching of the protein being due to a thermal mechanism rather than to an excited-state photoreaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.