Abstract
We demonstrate that strong impulsive gas heating or heating suppression at standard temperature and pressure can occur from coherent rotational excitation or deexcitation of molecular gases using a sequence of nonionizing laser pulses. For the case of excitation, subsequent collisional decoherence of the ensemble leads to gas heating significantly exceeding that from plasma absorption under the same laser focusing conditions. In both cases, the macroscopic hydrodynamics of the gas can be finely controlled with ∼40 fs temporal sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.