Abstract

Hole spin qubits in semiconductor quantum dots (QDs) are promising candidates for quantum information processing due to their weak hyperfine coupling to nuclear spins, and to the strong spin-orbit coupling which allows for rapid operation time. We propose a coherent control on two heavy-hole spin qubits in a double QD by a fast adiabatic driving protocol, which helps to achieve higher fidelities than other experimentally commonly used protocols as linear ramping, $\pi$-pulses or Landau-Zener passages. Using fast quasiadiabatic driving via spin-orbit coupling, it is possible to reduce charge noise significantly for qubit manipulation and achieve high robustness for the qubit initialization. We also implement one and two-qubit gates, in particular, NOT, CNOT, and SWAP-like gates, of hole spins in a double QD achieving fidelities above $99\%$, exhibiting the capability of hole spins to implement universal gates for quantum computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call