Abstract

By solving a two-dimensional time-dependent Schrödinger equation we investigate high harmonic generation (HHG) and isolated attosecond pulse generation for the H2+ molecular ion in a circularly polarized laser pulse combined with a Terahertz (THz) field. The harmonic intensity can be greatly enhanced and a continuum spectrum can be obtained when a THz field is added. The HHG process is studied by the semi-classical three-step model and the time-frequency analysis. Our studies show that only short trajectories contribute to HHG. Furthermore, we present the temporal evolution of the probability density of electron wave packet, which perfectly shows a clear picture of the electron's two-time recombination when a THz field is added, and it is the main mechanism of HHG. By superposing the harmonics in the range of 216-249 eV, an isolated attosecond pulse with a duration of about 69 attoseconds can be generated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call