Abstract

This paper investigates the behavior of conformal fluctuations of space-time geometry that are admissible under the quantized version of Einstein's general relativity. The approach to quantum gravity is via path integrals. It is shown that considerable simplification results when only the conformal degrees of freedom are considered under this scheme, so much so that it is possible to write down a formal kernel in the most general case where the space-time contains arbitrary distributions of particles with no other interaction except gravity. The behavior of this kernel near the classical space-time singularity then shows that quantum fluctuations inevitably diverge near the singularity. It is shown further that the root cause of this divergence lies in the fact that the Green's function for the conformally invariant scalar wave equation diverges at the singularity. The limitations on the validity of classical general relativity near the space-time singularity are discussed and it is argued that the notion of singularity itself needs to be radically modified once the quantum effects are taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.